JC Schools 7th Grade Accelerated Yearly Math Standards

Units	Priority Standards	Supporting Standards
Unit 1 Rational Numbers: Integers 23 Days Unit End Date: Sept. 23 Unit Assessment Window: Sept. 1-16	7.NS.A. 3 Solve problems involving the four arithmetic operations with rational numbers. 8.EEI.A. 1 Know and apply the properties of integer exponents to generate equivalent expressions 8.EEI.A.4.a,b Use scientific notation to solve problems a. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used b. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities	7.NS.A.1.a-f Apply and extend previous understandings of numbers to add and subtract rational numbers. a. Add and subtract rational numbers. b. Represent addition and subtraction on a horizontal or vertical number line. c. Describe situations and show that a number and its opposite have a sum of 0 (additive inverses). d. Understand subtraction of rational numbers as adding the additive inverse. e. Determine the distance between two rational numbers on the number line is the absolute value of their difference. f. Interpret sums and differences of rational numbers. 7.NS.A.2.a-f Apply and extend previous understandings of numbers to multiply and divide rational numbers. a. Multiply and divide rational numbers. b. Determine that a number and its reciprocal have a product of 1 (multiplicative inverse). c. Understand that every quotient of integers (with non-zero divisor) is a rational number. d. Convert a rational number to a decimal. e. Understand that all rational numbers can be written as fractions or decimal numbers that terminate or repeat. f. Interpret products and quotients of rational numbers by describing real-world contexts.

		8.EEI.A. 3 Express very large and very small quantities in scientific notation and approximate how many times larger one is than the other.
Unit 2 Rational Numbers: Decimals and Fractions 21 Days Unit End Date: Oct. 25 Unit Assessment Window: Oct. 18-Nov. 3	7.NS.A. 3 Solve problems involving the four arithmetic operations with rational numbers. 8.NS.A. 2 Estimate the value and compare the size of irrational numbers and approximate their locations on a number line	7.NS.A.1.a-f Apply and extend previous understandings of numbers to add and subtract rational numbers. a. Add and subtract rational numbers. b. Represent addition and subtraction on a horizontal or vertical number line. c. Describe situations and show that a number and its opposite have a sum of 0 (additive inverses). d. Understand subtraction of rational numbers as adding the additive inverse. e. Determine the distance between two rational numbers on the number line is the absolute value of their difference. f. Interpret sums and differences of rational numbers. 7.NS.A.2.a-f Apply and extend previous understandings of numbers to multiply and divide rational numbers. a. Multiply and divide rational numbers. b. Determine that a number and its reciprocal have a product of 1 (multiplicative inverse). c. Understand that every quotient of integers (with non-zero divisor) is a rational number. d. Convert a rational number to a decimal. e. Understand that all rational numbers can be written as fractions or decimal numbers that terminate or repeat. f. Interpret products and quotients of rational numbers by describing real-world contexts.

		8.NS.A.1.a-d Explore the real number system a. Know the differences between rational and irrational numbers b. Understand that all rational numbers have a decimal expansion that terminates or repeats c. Convert decimals which repeat into fractions and fractions into repeating decimals d. Generate equivalent representations of rational numbers
Unit 3	7.RP.A.2.a-d	7.RP.A. 1
	Recognize and represent proportional relationships between quantities.	Compute unit rates, including those that involve complex fractions, with like or different units.
Ratios and Proportions	a. Determine when two quantities are in a proportional relationship.	$\text { 7.GM.A. } 1$
	b. Identify and/or compute the constant of proportionality (unit rate).	Solve problems involving scale drawings of real objects and geometric figures, including computing actual
15 Days	c. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation.	lengths and areas from a scale drawing and reproducing the drawing at a different scale.
Unit End Date: Nov. 16 Unit Assessment Window: Nov. 9-23	d. Recognize that the graph of any proportional	7.RP.A. 3
	relationship will pass through the origin. 8.EEI.B.5.a,b	Solve problems involving ratios, rates, percentages and proportional relationships.
	Graph proportional relationships.	8.EEI.B.2.a
	a. Interpret the unit rate as the slope of the graph. b. Compare two different proportional relationships. 8.EEI.B.6.b	Apply concepts of slope and y-intercept to graphs, equations and proportional relationships a.Explain why the slope (m) is the same between any
	Apply concepts of slope and y-intercept to graphs, equations and proportional relationships	coordinate plane

	b. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b	
Unit 4 Percents 18 Days Unit End Date: Dec. 15 Unit Assessment Window: Dec. 8-Jan. 5	7.EEI.B.3.a,b Solve multi-step problems posed with rational numbers. a. Convert between equivalent forms of the same number. b. Assess the reasonableness of answers using mental computation and estimation strategies.	7.RP.A. 3 Solve problems involving ratios, rates, percentages and proportional relationships.
Unit 5 Expressions, Equations and Inequalities 20 Days Unit End Date: $\text { Jan. } 27$ Unit Assessment Window: Jan. 20-Feb. 3	7.EEI.B.4.a-c Write and/or solve linear equations and inequalities in one variable. a. Write and/or solve equations of the form $x+p=q$ and $p x=q$ in which p and q are rational numbers. b. Write and/or solve two---step equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q and r are rational numbers, and interpret the meaning of the solution in the context of the problem. c. Write, solve and/or graph inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q and r are rational numbers. 8.EEI.C.7.a,b Solve linear equations and inequalities in one variable. a. Create and identify linear equations with one solution, infinitely many solutions or no solutions.	7.EEI.A. 1 Apply properties of operations to simplify and to factor linear algebraic expressions with rational coefficients. 7.EEI.A. 2 Understand how to use equivalent expressions to clarify quantities in a problem. 8.EEI.A.2.a-c Investigate concepts of square and cube roots. a. Solve equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. b. Evaluate square roots of perfect squares less than or equal to 625 and cube roots of perfect cubes less than or equal to 1000. c. Recognize that square roots of non-perfect squares are irrational.

	b. Solve linear equations and inequalities with rational number coefficients, including equations and inequalities whose solutions require expanding expressions using the distributive property and combining like terms.	
Unit 6 Angle Relationships 18 Days Unit End Date: Feb. 23 Unit Assessment Window: Feb. 15-Mar. 2	7.GM.B. 5 Use angle properties to write and solve equations for an unknown angle. 8.GM.A.5.a-d Explore angle relationships and establish informal arguments. a. Derive the sum of the interior angles of a triangle. b. Explore the relationship between the interior and exterior angles of a triangle. c. Construct and explore the angles created when parallel lines are cut by a transversal. d. Use the properties of similar figures to solve problems. 8.GM.B. 7 Use the Pythagorean Theorem to determine unknown side lengths in right triangles in problems in two- and three-dimensional contexts.	7.GM.A.2.a,b Use a variety of tools to construct geometric shapes. a. Determine if provided constraints will create a unique triangle through construction. b. Construct special quadrilaterals given specific parameters.
Unit 7 Area, Volume, and Surface Area	7.GM.B.6.a,b Understand the relationship between area, surface area and volume. a. Find the area of triangles, quadrilaterals and other polygons composed of triangles and rectangles.	7.GM.A. 3 Describe two-dimensional cross sections of pyramids, prisms, cones and cylinders.

18 Days Unit End Date: March 21 Unit Assessment Window: Mar. 14-Apr. 5	b. Find the volume and surface area of prisms, pyramids and cylinders. 8.GM.C.9.a,b Solve problems involving surface area and volume a. Understand the concept of surface area and find surface area of pyramids b. Understand the concepts of volume and find the volume of pyramids, cones and spheres	7.GM.A.4.a,b Understand concepts of circles. a. Analyze the relationships among the circumference, the radius, the diameter, the area and Pi in a circle. b. Know and apply the formulas for circumference and area of circles to solve problems.
Unit 8 Probability 16 Days Unit End Date: April 19 Unit Assessment Window: April 12-26	7.DSP.C.7.a,b Explain possible discrepancies between a developed probability model and observed frequencies. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. 7.DSP.C.8.a,b Find probabilities of compound events using organized lists, tables, tree diagrams and simulations. a. Represent the sample space of a compound event. b. Design and use a simulation to generate frequencies for compound events.	7.DSP.C.5.a,b Investigate the probability of chance events. a. Determine probabilities of simple events. b. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. 7.DSP.C.6.a-c Investigate the relationship between theoretical and experimental probabilities for simple events. a. Predict outcomes using theoretical probability. b. Perform experiments that model theoretical probability. c. Compare theoretical and experimental probabilities.
Unit 9 Statistics 9 Days	7.DSP.A. 2 Use data from multiple samples to draw inferences about a population and investigate variability in estimates of the characteristic of interest.	7.DSP.A.1.a-c Understand that statistics can be used to gain information about a population by examining a sample of the population. a. Understand that a sample is a subset of a population.

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Unit End Date: } \\
\text { May } 2\end{array} & \begin{array}{l}\text { 7.DSP.B.4 } \\
\text { Compare the numerical measures of center, } \\
\text { Unit Assessment } \\
\text { Window: } \\
\text { Apr. 25-May } 9\end{array} & \begin{array}{l}\text { (rom two random samples to draw inferences about } \\
\text { fre population. }\end{array}\end{array}
$$ \begin{array}{l}b. Understand that generalizations from a sample are

valid only if the sample is representative of the

population.

c. Understand that random sampling is used to produce

representative samples and support valid inferences.\end{array}\right]\)| 7.DSP.B.3 |
| :--- |
| Analyze different data distributions using statistical |
| measures. |

